

Natasa Markovska

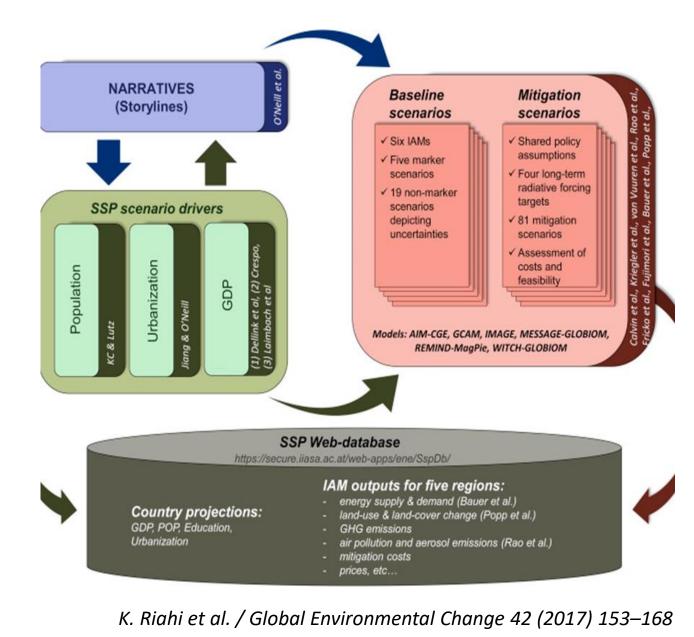
Research Center for Energy and Sustainable Development

Macedonian Academy of Sciences and Arts

History

1990s:

- SRES Special Report on Emissions Scenarios (IPCC TAR 2001, IPCC AR4 2007)
- four different possible future trajectories of population, economic growth and GHG emissions. Later:
- RCPs Represented Contraction Pathways (IPCC AR5 2014)
 - different levels of GHG and other radiative forcing that might occur in the future
 - four pathways, spanning a broad range of forcing in 2100 (2.6, 4.5, 6.0, and 8.5 W/m2),
 - no socioeconomic "narratives".
 - set pathways for GHG concentrations and, effectively, the amount of warming
- SSPs Shared Socioeconomic Pathways (IPCC AR6 2021)
 - five different ways in which the world might evolve in the absence of climate policy
 - how socioeconomic factors (population, economic growth, education, urbanisation and the rate of technological development) may change over the next century.
 - how different levels of climate change mitigation could be achieved when the mitigation targets of RCPs are included.


The development of the SSPs

STEP 1 Design of the **narratives**, providing the fundamental underlying logic for each SSP, focusing also on those elements of socioeconomic change that often cannot be covered by formal models.

STEP 2 Extensions of the narratives in terms of model "input tables", describing in qualitative terms the main SSP characteristics and scenario assumptions.

STEP 3 Elaboration of the basic elements of the SSPs in terms of **demographic and economic drivers** using quantitative models.

STEP 4 Elaboration of developments in the energy system, land use and greenhouse gas and air pollutant emissions of the **SSP baseline scenarios** using a set of Integrated Assessment Models (IAMs)

STEP 1 Design of the **narratives**, providing the fundamental underlying logic for each SSP, focusing also on those elements of socioeconomic change that often cannot be covered by formal models.

STEP 2 Extensions of the narratives in terms of model "input tables", describing in qualitative terms the main SSP characteristics and scenario assumptions.

STEP 3 Elaboration of the basic elements of the SSPs in terms of **demographic and economic drivers** using quantitative models.

STEP 4 Elaboration of developments in the energy system, land use and greenhouse gas and air pollutant emissions of the **SSP baseline scenarios** using a set of Integrated Assessment Models (IAMs)

SSP Narratives

SSP1: Sustainability (Taking the Green Road)SSP2: Middle of the RoadSSP3: Regional Rivalry (A Rocky Road)SSP4: Inequality (A Road divided)SSP5: Fossil-fueled Development (Taking the Highway)

Summary of SSP narratives

SSP1 **Sustainability – Taking the Green Road** (Low challenges to mitigation and adaptation) The world shifts gradually, but pervasively, toward a **more sustainable path**, emphasizing more inclusive development that **respects perceived environmental boundaries**. Management of the global commons slowly improves, educational and health investments accelerate the demographic transition, and the emphasis on economic growth shifts toward a broader **emphasis on human well-being**. Driven by an increasing commitment to achieving development goals, **inequality is reduced** both across and within countries. Consumption is oriented toward **low material growth** and **lower resource and energy intensity**.

SSP2 **Middle of the Road** (Medium challenges to mitigation and adaptation)

The world follows a path in which social, economic, and technological trends do not shift markedly from historical patterns. Development and income growth proceeds unevenly, with some countries making relatively good progress while others fall short of expectations. Global and national institutions work toward but make slow progress in achieving sustainable development goals. Environmental systems experience degradation, although there are some improvements and overall the intensity of resource and energy use declines. Global population growth is moderate and levels off in the second half of the century. Income inequality persists or improves only slowly and challenges to reducing vulnerability to societal and environmental changes remain.

SSP3 **Regional Rivalry – A Rocky Road** (High challenges to mitigation and adaptation)

A resurgent nationalism, concerns about competitiveness and security, and regional conflicts push countries to increasingly focus on domestic or, at most, regional issues. Policies shift over time to become increasingly oriented toward national and regional security issues. Countries focus on achieving energy and food security goals within their own regions at the expense of broader-based development. Investments in education and technological development decline. Economic development is slow, consumption is material-intensive, and inequalities persist or worsen over time. Population growth is low in industrialized and high in developing countries. A low international priority for addressing environmental concerns leads to strong environmental degradation in some regions.

SSP4 **Inequality – A Road Divided** (Low challenges to mitigation, high challenges to adaptation)

Highly unequal investments in human capital, combined with **increasing disparities in economic opportunity and political power**, lead to increasing inequalities and stratification both across and within countries. Over time, **a gap widens** between an internationally-connected society that contributes to knowledge- and capital-intensive sectors of the global economy, and a fragmented collection of lower-income, poorly educated societies that work in a labor intensive, low-tech economy. Social cohesion degrades and conflict and unrest become increasingly common. Technology development is high in the high-tech economy and sectors. The globally connected energy sector diversifies, with **investments in both carbon-intensive fuels like coal and unconventional oil, but also low-carbon energy sources**. **Environmental policies focus on local issues around middle and high income areas**.

SSP5 **Fossil-fueled Development – Taking the Highway** (High challenges to mitigation, low challenges to adaptation) This world places increasing faith in **competitive markets**, **innovation and participatory societies** to produce rapid **technological progress and development of human capital** as the path to sustainable development. Global markets are increasingly integrated. There are also **strong investments in health**, **education**, **and institutions to enhance human and social capital**. At the same time, the push for economic and social development is coupled with the **exploitation of abundant fossil fuel resources** and the adoption of **resource and energy intensive lifestyles** around the world. All these factors lead to **rapid growth of the global economy**, while global population peaks and declines in the 21st century. **Local environmental problems like air pollution are successfully managed**. There is faith in the ability to effectively manage social and ecological systems, including by geo-engineering if necessary.

Mitigation and adaptation challenges

- SSP1: Sustainability (Taking the Green Road)
- SSP2: Middle of the Road
- SSP3: Regional Rivalry (A Rocky Road)
- SSP4: Inequality (A Road divided)
- SSP5: Fossil-fueled Development (Taking the Highway)

Socio-economic challenges for mitigation

Socio-economic challenges for adaptation

STEP 1 Design of the **narratives**, providing the fundamental underlying logic for each SSP, focusing also on those elements of socioeconomic change that often cannot be covered by formal models.

STEP 2 Extensions of the narratives in terms of model "input tables", describing in qualitative terms the main SSP characteristics and scenario assumptions.

STEP 3 Elaboration of the basic elements of the SSPs in terms of **demographic and economic drivers** using quantitative models.

STEP 4 Elaboration of developments in the energy system, land use and greenhouse gas and air pollutant emissions of the **SSP baseline scenarios** using a set of Integrated Assessment Models (IAMs)

1: Qualitative assumptions for energy demand

	SSP 1	SSP 2	SSP 3	SSP 4	SSP 5		
	Country Income Groupings						
SSP Element	Low Med High	Low Med High	Low Med High	Low Med High	Low Med High		
Non-climate Policies							
Traditional Fuel Use	fast phase-out, driven by policies and economic development	intermediate phase-out, regionally diverse speed	continued realiance on traditional fuels	continued some traditional traditional fuel use among low fuel use income housholds	fast phase-out, driven by development priority		
Energy Demand Side							
Lifestyles	modest service demands (less	medium service demands	medium service demands	low service modest service	high service demands (very		
	material intensive)	(generally material intensive)	(material intensive)	demands demands	material intensive)		
Environmental Awareness	high	medium	low	low high	medium (low for global level/high for local level)		
Energy Intensity of Services							
Industry	low	medium	high	high low	medium		
Buildings	low	medium	high	medium low/medium	medium		
Transportation	low	medium	medium high	low/mediu low	high		
General Comments		some regional diversity retained					

2: Qualitative assumptions for fossil energy supply

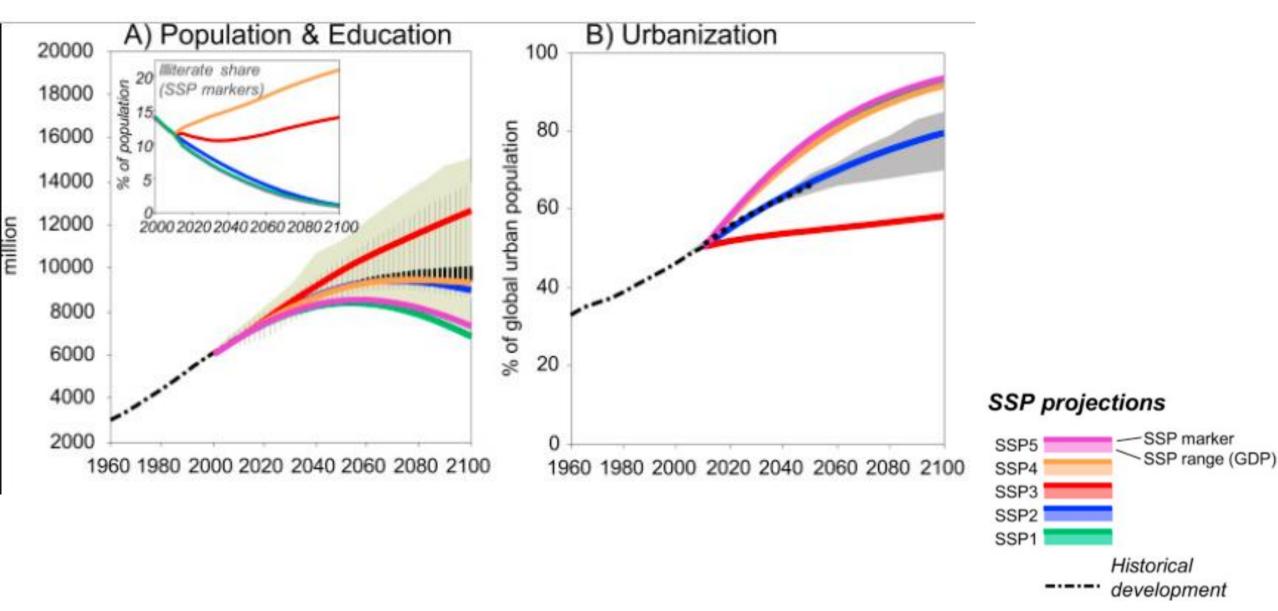
	SSP1	SSP2	SSP3			SSP4	SSP5	
	Sustainability	Middle of the Road	Regional Rivalry		Inequality			Fossil fueled development
			Country grouping		Country grouping by income			
			Exporter I	Importer	Low	Medium	High	
Coal								
Macro-economy	cost driver	neutral	cost redu	ucing	cost driver	cost driver	neutral	cost reducing
Technological progress	slow	medium	slow	fast		medium		very fast
National & environmental policy	very restrictive	supportive	very suportive		supportive	supportive	restrictive	very supportive
Conv. hydrocarbons								
Macro-economy	neutral	neutral	neutral		cost driver	neutral	cost reducing	cost reducing
Technological progress	medium	medium	medium		fast			very fast
National & environmental policy	restrictive	supportive	not supportive	supportive	supportive	supportive	restrictive	very supportive
Unconv. hydrocarbons								
Macro-economy	neutral	neutral	neutr	ral	cost driver	neutral	cost reducing	cost reducing
Technological progress	slow	medium	slow	medium		medium		very fast
National & environmental policy	very restrictive	supportive	not supportive s	very supportive	supportive	supportive	restrictive	very supportive
General								
Trade barriers	free trade	some barriers	high bar	rriers		barriers		free

3: Qualitative assumptions for energy conversion technologies

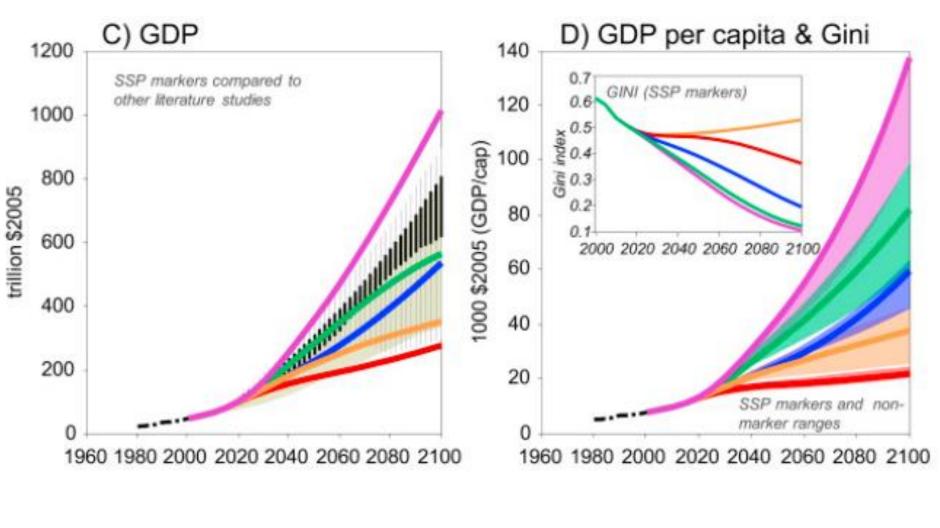
	SSP 1 SSP 2		SSP 3		SSP 4		SSP 5						
	Country Income Groupings												
SSP Element	Low N	1ed High	Low	Med	High	Low	Med	High	Low	Med	High	Low Med	l High
Conventional and Unconve	ntional Fos	sil Fuel Conve	ersion (sy	nfuel an	nd synga	s in pare	nthesis	if differ	ent)				
Technology Development	N	/led		Med			Low		Low	Med	Med	Med (Hi	gh)
Social Acceptance	L	.ow		Med			High		High	Low	Low	High	
Commercial Biomass Conv	ersion												
Technology Development	H	ligh		Med			Low		High	High	High	Med	
Social Assoptance	L	.ow		Med			High		High	High	High	Med	
Non-bio Renewables Conv	ersion												
Technology Development	н	ligh		Med			Low		High	High	High	Med	
Social Acceptance	Н	ligh		Med			Med		High	High	High	Low	
Nuclear Power													
Technology Development	N	/led		Med		Low	Low	Med	High 📍	High	High	Med	
Social Acceptance	L	.ow		Med		High 📍	High 📍	High	High	Med	Med	Med	
CCS (under climate policy of	only)												
Technology Development	N	/led		Med			Med		High 🏅	High	High	High	
Social Acceptance	L	.ow		Med			Med		High	Med	Med	Med	

4: Qualitative assumptions for Land-use change dynamics

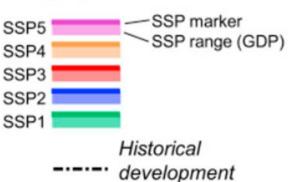
SSP1	SSP2	SSP3	SSP4	SSP5
Land use is strongly	Land use change is	tand use change is	Land use change is	Land use change is
regulated, e.g. tropical	incompletely	hardly regulated,	strongly regulated in	incompletely
deforestation rates are	regulated, i.e. tropical	i.e. tropical	high income countries,	regulated, i.e. tropical
strongly reduced. Crop	deforestation	deforestation	but tropical	deforestation
yields are rapidly	continues, although at	continues at current	deforestation still	continues, although at
increasing in low- and	slowly declining rates	rates. Rates of crop	occurs in poor	slowly declining rates
medium-income	over time. Rates of	yield increase	countries. High income	over time. Crop yields
regions, leading to a	crop yield increase	decline strongly	countries achieve high	are rapidly increasing
faster catching-up with	decline slowly over	over time, due to	crop yield increases,	Unhealthy diets with
high income countries.	time, but low-income	little investment.	while low income	high animal shares
Healthy diets with low	regions catch up to a	While rich countries	countries remain	and high waste
animal-calorie shares	certain extent. Caloric	are characterized by	relatively unproductive	prevail. Barriers to
and low waste prevail.	consumption and	unhealthy diets	in agriculture. Caloric	international trade are
In an open, globalized	animal calorie shares	with high animal	consumption and	strongly reduced, and
economy, food is	converge towards	shares wasteful	animal calorie shares	strong globalization
traded internationally.	medium levels.	treatment of food,	converge towards	leads to high levels of
	International trade	risk of hunger	medium levels. Food	international trade.
	remains to large	remains high in	trade is globalized, but	
	extent regionalised.	many poor	access to markets is	
		countries. A	limited in poor	
		regionalized world	countries, increasing	
		leads to reduced	vulnerability for non-	
		trade flows.	connected population	
			groups. K Bighi et al	/ Global Environmental Chanae


STEP 1 Design of the **narratives**, providing the fundamental underlying logic for each SSP, focusing also on those elements of socioeconomic change that often cannot be covered by formal models.

STEP 2 Extensions of the narratives in terms of model "input tables", describing in qualitative terms the main SSP characteristics and scenario assumptions.


STEP 3 Elaboration of the basic elements of the SSPs in terms of **demographic and economic drivers** using quantitative models.

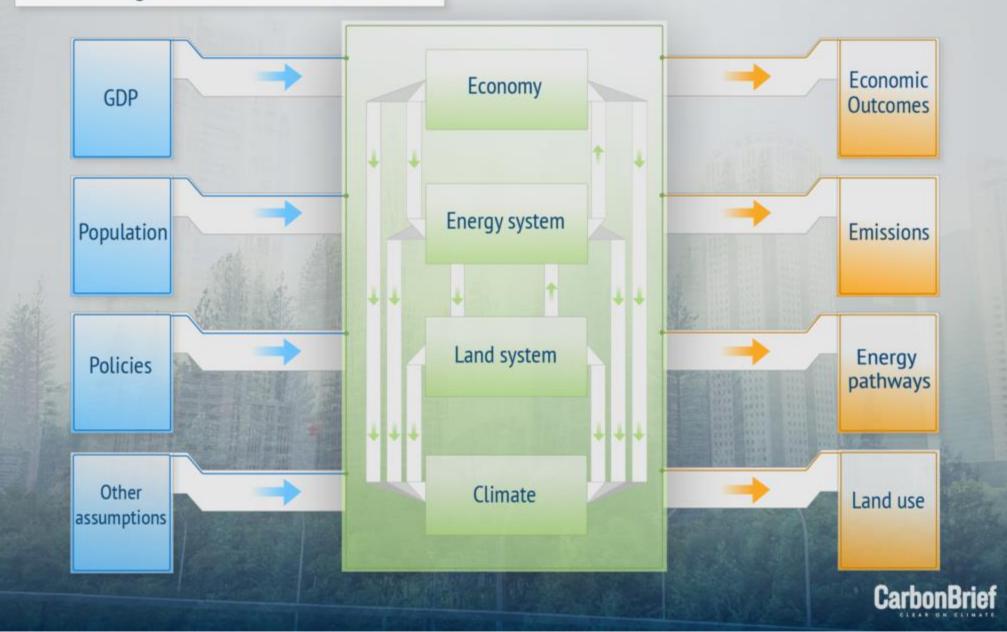
STEP 4 Elaboration of developments in the energy system, land use and greenhouse gas and air pollutant emissions of the **SSP baseline scenarios** using a set of Integrated Assessment Models (IAMs)


Demographic drivers

Economic drivers

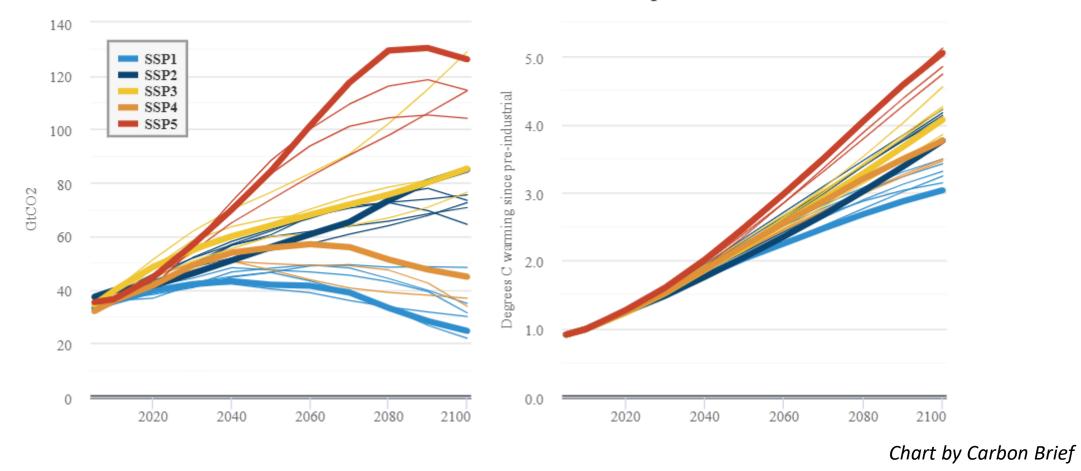
SSP projections

K. Riahi et al. / Global Environmental Change 42 (2017) 153–168


STEP 1 Design of the **narratives**, providing the fundamental underlying logic for each SSP, focusing also on those elements of socioeconomic change that often cannot be covered by formal models.

STEP 2 Extensions of the narratives in terms of model "input tables", describing in qualitative terms the main SSP characteristics and scenario assumptions.

STEP 3 Elaboration of the basic elements of the SSPs in terms of **demographic and economic drivers** using quantitative models.


STEP 4 Elaboration of developments in the energy system, land use and greenhouse gas and air pollutant emissions of the **SSP baseline scenarios** using a set of Integrated Assessment Models (IAMs)

How do Integrated Assessment Models work?

IAM models as used for the development of the SSP scenarios

Model name (hosting institution)	SSP Marker	SSP coverage (# of scenarios)	Model category	Solution Algorithm	
AIM/CGE (NIES)	SSP3 (<u>Fujimori et al.,2016</u>)	SSP1, SSP2, SSP3, SSP4, SSP5 (22 scenarios)	General equilibrium (GE)	Recursive dynamic	
GCAM (PNNL)	SSP4 (<u>Calvin et al., 2016</u>)	SSP1, SSP2, SSP3, SSP4, SSP5 (20 scenarios)	Partial equilibrium (PE)	Recursive dynamic	
IMAGE (PBL)	SSP1 (<u>van Vuuren et al.,2016</u>)	SSP1, SSP2, SSP3, (13 scenarios)	Hybrid (systems dynamic model and GE for agriculture)	Recursive dynamic	
MESSAGE-GLOBIOM (IIASA)	SSP2 (<u>Fricko et al.,2016</u>)	SSP1, SSP2, SSP3, (13 scenarios)	Hybrid (systems engineering partial equilibrium models linked to aggregated GE)	Intertemporal optimization	
REMIND-MAgPIE (PIK)	SSP5 (<u>Kriegler et al.,2016</u>)	SSP1, SSP2, SSP5, (14 scenarios)	General equilibrium (GE)	Intertemporal optimization	
WITCH-GLOBIOM (FEEM)	_	SSP1, SSP2, SSP3, SSP4, SSP5 (23 scenarios) <i>K. Riahi e</i>	General equilibrium (GE) et al. / Global Environmental	Intertemporal optimization <i>Change 42 (2017) 153–168</i>	

"Model for the Assessment of Greenhouse Gas Induced Climate Change" (MAGICC), a simple climate model which translates emissions into atmospheric concentrations, radiative forcing and global average temperature change

CO2 emissions for SSP baselines

Global mean temperature

Coal Gas Biomass Renewables Oil Nuclear 2,000 SSP1 SSP2 SSP3 SSP4 SSP5 1,750 1,500 Exajoules of primary energy ,250 1,000 750 500 250 0 AIM CAM AGE AGE MIND CH AIM CAM AGE AGE MIND CH Current AIM CAMAGE AGE WITCH AIM CAM CH AIM CAMMIND CH

Primary energy in 2100 by model for SSP baseline scenarios

STEP 1 Design of the **narratives**, providing the fundamental underlying logic for each SSP, focusing also on those elements of socioeconomic change that often cannot be covered by formal models.

STEP 2 Extensions of the narratives in terms of model "input tables", describing in qualitative terms the main SSP characteristics and scenario assumptions.

STEP 3 Elaboration of the basic elements of the SSPs in terms of **demographic and economic drivers** using quantitative models.

STEP 4 Elaboration of developments in the energy system, land use and greenhouse gas and air pollutant emissions of the **SSP baseline scenarios** using a set of Integrated Assessment Models (IAMs)

Shared Policy Assumptions (SPA)

Policy stringency in the near term and the timing of regional participation

SSP1, SSP4 Early accession with global collaboration as of 2020

SSP2, SSP5

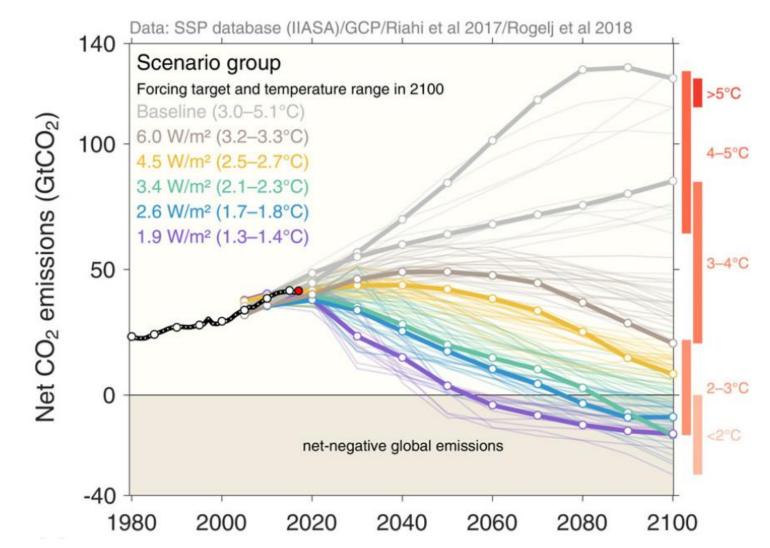
Some delays in establishing global action with regions transitioning to global cooperation between 2020–2040

SSP3

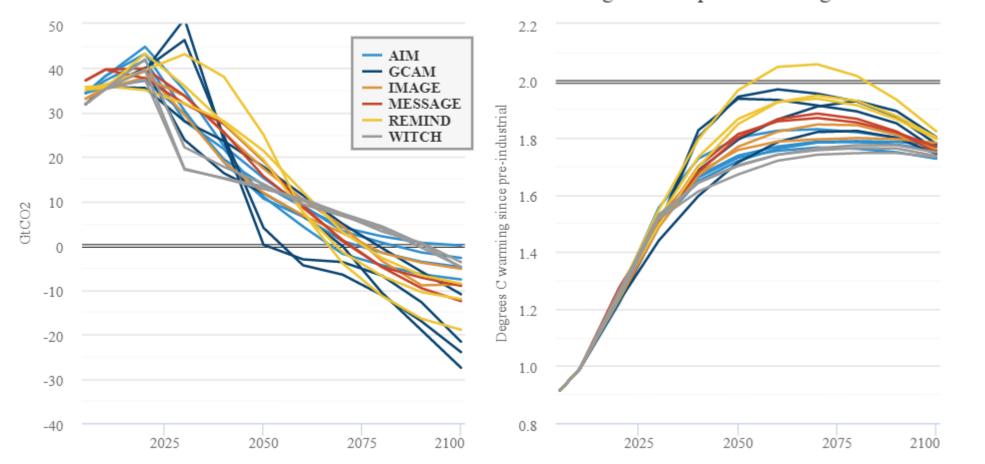
Late accession – higher income regions join global regime between 2020–2040, while lower income regions follow between 2030 and 2050

Coverage of land use emissions

SSP1, SSP5 Effective coverage (at the level of emissions control in the energy and industrial sectors)

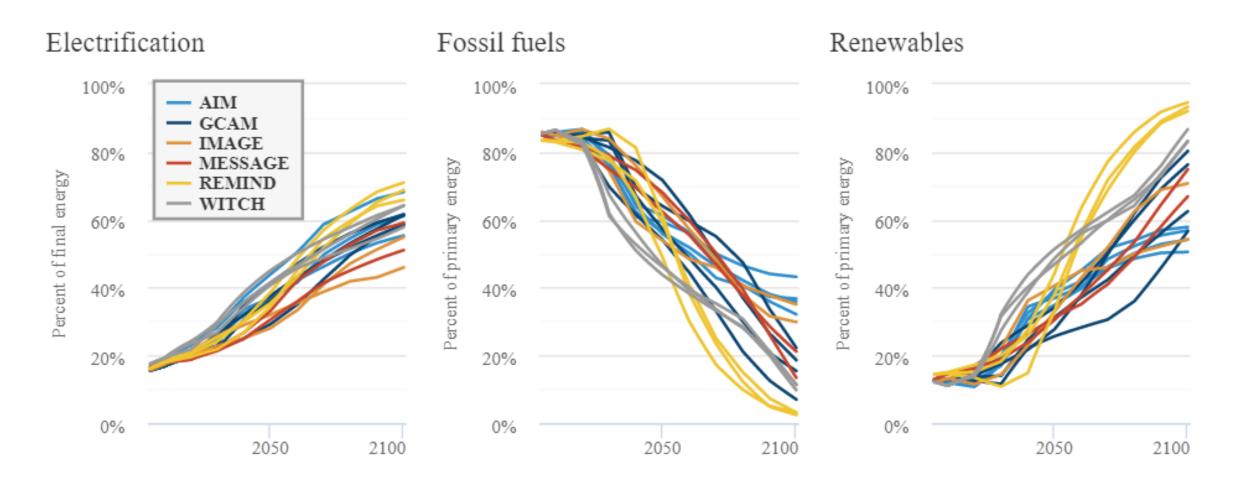

SSP2, SSP4 Intermediately effective coverage (limited REDD, but effective coverage of agricultural emissions)

SSP3

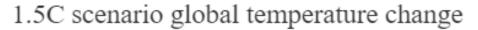

Very limited coverage (implementation failures and high transaction costs)

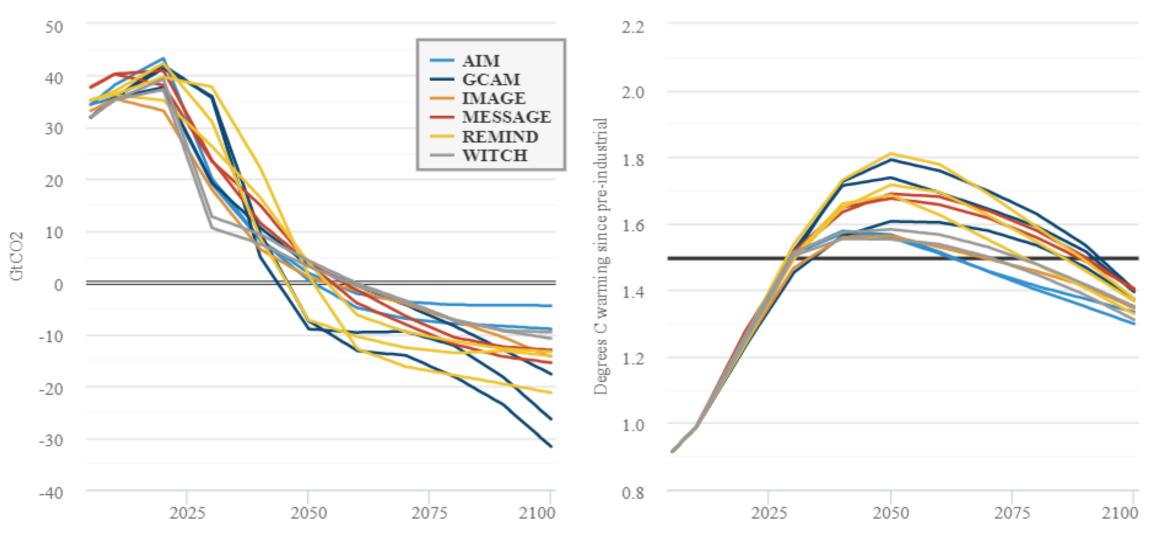
Mitigation Targets

Defined by radiative forcing levels analogous to the RCPs (2.6, 4.5, 6.0 W/m2) + 1.9 W/m2 + 3.4 W/m2

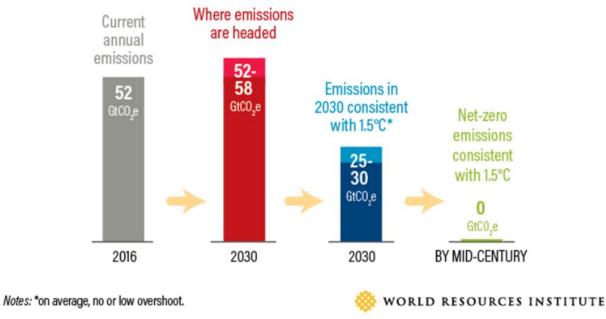

RCP2.6

2C scenario CO2 emissions


2C scenario global temperature change


RCP2.6

RCP1.9


1.5C scenario CO2 emissions

Common features of 1.5°C pathwavs

• By 2030, halving the emissions, and by midcentury, CO2 emissions falling to net-zero

- Renewables supplying 70 percent to 85 percent of electricity and unabated coal use being largely phased out
- Use of carbon dioxide removal (CDR) in the order of 100 –1000 GtCO2 over the 21st century

CDR deployed at such a scale is unproven, and is a major risk to our ability to limit warming to 1.5°C !!!

The sector coupling and carbon-neutral energy storage technologies which are hot topics in the energy planning and modeling science could shed a different light, couldn't they?